Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.246
Filtrar
1.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564197

RESUMO

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Assuntos
Doença de Chagas , Rhodnius , Animais , Feminino , Edição de Genes/métodos , Rhodnius/genética , Rhodnius/parasitologia , Sistemas CRISPR-Cas , Insetos Vetores/parasitologia , Doença de Chagas/genética , Doença de Chagas/parasitologia
2.
Traffic ; 25(4): e12935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629580

RESUMO

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Leishmania , Parasitos , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia
3.
PLoS One ; 19(4): e0300021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635818

RESUMO

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Assuntos
Aminopiridinas , Doença de Chagas , Ácidos Sulfúricos , Trypanosoma cruzi , Humanos , Doença de Chagas/parasitologia , Peróxidos
4.
Front Immunol ; 15: 1342431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655255

RESUMO

Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.


Assuntos
Doença de Chagas , Variação Genética , Trypanosoma cruzi , Trypanosoma cruzi/genética , Humanos , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Animais , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia
5.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495650

RESUMO

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Assuntos
Doença de Chagas , Doenças Transmissíveis , Trypanosoma cruzi , Feminino , Animais , Camundongos , Humanos , Trypanosoma cruzi/metabolismo , Pepsina A/metabolismo , Parasitemia , Modelos Animais de Doenças , Cromatografia Líquida , Espectrometria de Massas em Tandem , Doença de Chagas/parasitologia , Mucinas
6.
PLoS Negl Trop Dis ; 18(3): e0012016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437237

RESUMO

Bolivia has the highest incidence of Chagas disease (CD) worldwide. Caused by the parasite Trypanasoma cruzi, CD is generally a chronic condition. Diagnosis is logistically and financially challenging, requiring at least two different laboratory-based serological tests. Many CD cases are missed; in Bolivia it is estimated just 6% of individuals chronically infected with T. cruzi get diagnosed. Achieving control on the way to elimination of CD requires a radical simplification of the current CD testing pathways, to overcome the barriers to accessing CD treatment. We aimed to generate unbiased performance data of lateral flow assays (LFAs) for T. cruzi infection in Bolivia, to evaluate their usefulness for improving T. cruzi diagnosis rates in a precise and efficient manner. This retrospective, laboratory-based, diagnostic evaluation study sought to estimate the sensitivity/specificity of 10 commercially available LFAs for T. cruzi, using the current CD diagnostic algorithm employed in Bolivia as the reference test method. All tests were blinded at the study site and performed by three operators. In total, 470 serum samples were tested, including 221 and 249 characterized as CD-positive/-negative, respectively. The LFAs were scored according to their relative importance using a decision-tree-based algorithm, with the mean decrease in Gini index as the scoring metric. The estimates of sensitivities ranged from 62.2-97.7% (95% confidence interval (CI) lower bound 55.0-94.7%); for specificities the range was 78.6-100% (95% CI lower bound 72.0-97.5%); 5/10 and 6/10 tests had sensitivity >90% and specificity >95%, respectively. Four LFAs showed high values of both sensitivity (93-95%) and specificity (97-99%). The agreement between 6 LFAs and the reference tests was almost perfect (Kappa 0.83-0.94). Most LFAs evaluated thus showed performances comparable with current laboratory-based diagnostic methods.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Bolívia , Estudos Retrospectivos , Doença de Chagas/parasitologia , Sensibilidade e Especificidade
7.
mBio ; 15(4): e0031924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38441981

RESUMO

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Origem de Replicação , Doença de Chagas/parasitologia , Dosagem de Genes , Cromossomos
8.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526868

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Humanos , Receptor 4 Toll-Like/genética , Receptor PAR-2/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Antivirais/farmacologia , Inibidores de Serino Proteinase/farmacologia , Inflamação , Serina , Serina Endopeptidases/genética
9.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481660

RESUMO

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Assuntos
Doença de Chagas , Parasitos , Vacinas Protozoárias , Trypanosoma cruzi , Vacinas , Humanos , Animais , Camundongos , Baculoviridae/genética , Antígenos de Protozoários/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética , Vacinação , Vacinas Protozoárias/genética
10.
PLoS Negl Trop Dis ; 18(2): e0011961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408095

RESUMO

BACKGROUND: Trypanosoma cruzi and HIV coinfection can evolve with depression of cellular immunity and increased parasitemia. We applied quantitative PCR (qPCR) as a marker for preemptive antiparasitic treatment to avoid fatal Chagas disease reactivation and analyzed the outcome of treated cases. METHODOLOGY: This mixed cross-sectional and longitudinal study included 171 Chagas disease patients, 60 coinfected with HIV. Of these 60 patients, ten showed Chagas disease reactivation, confirmed by parasites identified in the blood, cerebrospinal fluid, or tissues, 12 exhibited high parasitemia without reactivation, and 38 had low parasitemia and no reactivation. RESULTS: We showed, for the first time, the success of the timely introduction of benznidazole in the non-reactivated group with high levels of parasitemia detected by qPCR and the absence of parasites in reactivated cases with at least 58 days of benznidazole. All HIV+ patients with or without reactivation had a 4.0-5.1 higher chance of having parasitemia than HIV seronegative cases. A positive correlation was found between parasites and viral loads. Remarkably, treated T. cruzi/HIV-coinfected patients had 77.3% conversion from positive to negative parasitemia compared to 19.1% of untreated patients. Additionally, untreated patients showed ~13.6 times higher Odds Ratio of having positive parasitemia in the follow-up period compared with treated patients. Treated and untreated patients showed no differences regarding the evolution of Chagas disease. The main factors associated with all-cause mortality were higher parasitemia, lower CD4 counts/µL, higher viral load, and absence of antiretroviral therapy. CONCLUSION: We recommend qPCR prospective monitoring of T. cruzi parasitemia in HIV+ coinfected patients and point out the value of pre-emptive therapy for those with high parasitemia. In parallel, early antiretroviral therapy introduction is advisable, aiming at viral load control, immune response restoration, and increasing survival. We also suggest an early antiparasitic treatment for all coinfected patients, followed by effectiveness analysis alongside antiretroviral therapy.


Assuntos
Doença de Chagas , Coinfecção , Infecções por HIV , Nitroimidazóis , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Estudos Longitudinais , Estudos Transversais , Estudos Prospectivos , Doença de Chagas/complicações , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Reação em Cadeia da Polimerase , Antiparasitários/uso terapêutico , Coinfecção/parasitologia
11.
J Mol Diagn ; 26(5): 323-336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360211

RESUMO

Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.


Assuntos
Doença de Chagas , Coinfecção , Sequenciamento por Nanoporos , Trypanosoma cruzi , Humanos , Animais , Genótipo , RNA Ribossômico 18S/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética
12.
PLoS Negl Trop Dis ; 18(2): e0011937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306403

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.


Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Humanos , Animais , Rhodnius/parasitologia , Temperatura , Insetos Vetores/parasitologia , Doença de Chagas/parasitologia , Estágios do Ciclo de Vida , Carga Parasitária
13.
Sci Rep ; 14(1): 5000, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424216

RESUMO

Trypanosoma cruzi is the protozoan that causes Chagas disease (CD), an endemic parasitosis in Latin America distributed around the globe. If CD is not treated in acute phase, the parasite remains silent for years in the host's tissues in a chronic form, which may progress to cardiac, digestive or neurological manifestations. Recently, studies indicated that the gastrointestinal tract represents an important reservoir for T. cruzi in the chronic phase. During interaction T. cruzi and host cells release extracellular vesicles (EVs) that modulates the immune system and infection, but the dynamics of secretion of host and parasite molecules through these EVs is not understood. Now, we used two cell lines: mouse myoblast cell line C2C12, and human intestinal epithelial cell line Caco-2to simulate the environments found by the parasite in the host. We isolated large EVs (LEVs) from the interaction of T. cruzi CL Brener and Dm28c/C2C12 and Caco-2 cells upon 2 and 24 h of infection. Our data showed that at two hours there is a strong cellular response mediated by EVs, both in the number, variety and enrichment/targeting of proteins found in LEVs for diverse functions. Qualitative and quantitative analysis showed that proteins exported in LEVs of C2C12 and Caco-2 have different patterns. We found a predominance of host proteins at early infection. The parasite-host cell interaction induces a switch in the functionality of proteins carried by LEVs and a heterogeneous response depending on the tissues analyzed. Protein-protein interaction analysis showed that cytoplasmic and mitochondrial homologues of the same parasite protein, tryparedoxin peroxidase, were differentially packaged in LEVs, also impacting the interacting molecule of this protein in the host. These data provide new evidence that the interaction with T. cruzi leads to a rapid tissue response through the release of LEVs, reflecting the enrichment of some proteins that could modulate the infection environment.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Animais , Camundongos , Humanos , Trypanosoma cruzi/metabolismo , Células CACO-2 , Doença de Chagas/parasitologia , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita
14.
Emerg Microbes Infect ; 13(1): 2315964, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38381980

RESUMO

Chagas Disease is an important neglected tropical disease caused by Trypanosoma cruzi. There is no gold standard for diagnosis and commercial serological tests perform poorly in certain locations. By aligning T. cruzi genomes covering parasite genetic and geographic diversity, we identified highly conserved proteins that could serve as universal antigens for improved diagnosis. Their antigenicity was tested in high-density peptide microarrays using well-characterized plasma samples, including samples presenting true infections but discordant serology. Individual and combination of epitopes were also evaluated in peptide-ELISAs. We identified >1400 highly conserved T. cruzi proteins evaluated in microarrays. Remarkably, T. cruzi positive controls had a different epitope recognition profile compared to serologically discordant samples. In particular, multiple T. cruzi antigens used in current tests and their strain-variants, and novel epitopes thought to be broadly antigenic failed to be recognized by discordant samples. Nonetheless, >2000 epitopes specifically recognized by IgGs from both positive controls and discordant samples were identified. Evaluation of selected peptides in ELISA further illustrated the extensive variation in antibody profiles among subjects and a peptide combination could outperform a commercial ELISA, increasing assay sensitivity from 52.3% to 72.7%. Individual variation in antibody profiles rather than T. cruzi diversity appears to be the main factor driving differences in serological diagnostic performance according to geography, which will be important to further elucidate. ELISA with a combination of peptides recognized by a greater number of individuals could better capture infections, and further development may lead to an optimal antigen mixture for a universal diagnostic assay.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Trypanosoma cruzi/química , Antígenos de Protozoários/genética , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Epitopos/genética , Ensaio de Imunoadsorção Enzimática , Peptídeos
15.
Infect Genet Evol ; 118: 105563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301855

RESUMO

Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.


Assuntos
Doença de Chagas , Quirópteros , Leishmania infantum , Trypanosoma cruzi , Animais , Humanos , Quirópteros/parasitologia , Brasil/epidemiologia , Trypanosoma cruzi/genética , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Doença de Chagas/parasitologia , Mamíferos
16.
Adv Protein Chem Struct Biol ; 138: 401-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220431

RESUMO

The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Doença de Chagas/parasitologia
17.
Acta Trop ; 251: 107117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184291

RESUMO

Drivers for wildlife infection are multiple and complex, particularly for vector-borne diseases. Here, we studied the role of host competence, geographic area provenance, and diversity of vector-host interactions as drivers of wild mammal infection risk to Trypanosoma cruzi, the aetiological agent of Chagas disease. We performed a systematic sampling of wild mammals in 11 states of Mexico, from 2017 to 2018. We tested the positivity of T. cruzi with the Tc24 marker in tissues samples for 61 wild mammal species (524 specimens sampled). 26 mammal species were positive for T. cruzi, of which 11 are new hosts recorded in Mexico 75 specimens were positive and 449 were negative for T. cruzi infection, yielding an overall prevalence of 14.3%. The standardized infection risk of T. cruzi of our examined specimens was similar, no matter the host species or their geographic origins. Additionally, we used published data of mammal positives for T. cruzi to complement records of T. cruzi infection in wild mammals and inferred a trophic network of Triatoma spp. (vectors) and wild mammal species in Mexico, using spatial data-mining modelling. Infection with T. cruzi was not homogeneously distributed in the inferred trophic network. This information allowed us to develop a predictive model for T. cruzi infection risk for wild mammals in Mexico, considering risk as a function of the diversity of vector-host spatial associations in a large-scale geographic context, finding that the addition of competent vectors to a multi-host parasite system amplifies host infection risk. The diversity of vector-host interactions per se constitutes a relevant driver of infection risk because hosts and vectors are not isolated from each other.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Animais Selvagens/parasitologia , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Doença de Chagas/parasitologia , Triatoma/parasitologia , Mamíferos/parasitologia , Zoonoses/epidemiologia , Geografia
18.
Microbiol Spectr ; 12(3): e0288023, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270449

RESUMO

Post-transcriptional regulation of gene expression is a critical process for adapting to and surviving Trypanosoma cruzi, a parasite with a complex life cycle. RNA-binding proteins (RBPs) are key players in this regulation, forming ribonucleoprotein complexes (messenger ribonucleoproteins) and RNA granules that control transcript stability, localization, degradation, and translation modulation. Understanding the specific roles of individual RBPs is crucial for unraveling the details of this regulatory network. In this study, we generated null mutants of the TcZC3HTTP gene, a specific RBP in the Trypanosoma family characterized by a C3H zinc finger and a DNAJ domain associated with RNA and protein binding, respectively. Through cell growth assays, we demonstrated that the absence of TcZC3HTTP or the expression of an additional tagged version impacted epimastigote growth, indicating its contribution to cell proliferation. TcZC3HTTP was found to associate with mRNAs involved in cell cycle and division in epimastigotes, while in nutritionally stressed parasites it exhibited associations with mRNAs coding for other RBPs and rRNA. Furthermore, our analysis identified that TcZC3HTTP protein partners were different during normal growth conditions compared to starvation conditions, with the latter showing enrichment of ribosomal proteins and other RBPs. Therefore, this study provides insights into TcZC3HTTP's role in the post-transcriptional regulation of gene expression during normal growth and nutritional stress in T. cruzi, uncovering its versatile functions in different cellular contexts.IMPORTANCEUnderstanding how Trypanosoma cruzi, the causative agent of Chagas disease, regulates gene expression is crucial for developing targeted interventions. In this study, we investigated the role of TcZC3HTTP, an RNA-binding protein, in post-transcriptional regulation. Our findings demonstrate that TcZC3HTTP is relevant for the growth and proliferation of epimastigotes, a stage of the parasite's life cycle. We identified its associations with specific mRNAs involved in cell cycle and division and its interactions with enzymes and other RNA-binding proteins (RBPs) under normal and starvation conditions. These insights shed light on the regulatory network underlying gene expression in T. cruzi and reveal the multifaceted functions of RBPs in this parasite. Such knowledge enhances our understanding of the parasite's biology and opens avenues for developing novel therapeutic strategies targeting post-transcriptional gene regulation in T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Doença de Chagas/parasitologia , RNA/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
19.
Int J Biol Macromol ; 259(Pt 2): 129192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216013

RESUMO

Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.


Assuntos
Doença de Chagas , Leishmania braziliensis , Trypanosoma cruzi , Humanos , NADPH Desidrogenase/química , NADPH Desidrogenase/farmacologia , Doença de Chagas/parasitologia , Flavinas/farmacologia
20.
Parasitol Res ; 123(1): 80, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163833

RESUMO

Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/metabolismo , Caseína Quinase II/metabolismo , Doença de Chagas/parasitologia , Invertebrados , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...